Islamabad,
Jan 22 : An international team of scientists from The Scripps Research
Institute in California and the National Research Institute for Child Health and
Development in Japan has discovered that a natural molecule in the body counters
the progression of osteoarthritis.
The findings could one day lead to
new therapies for some common diseases of aging.
The study was published
in an advanced, online issue of the journal Genes & Development and will be
featured as the cover story of the June 1 print edition of the
journal.
The molecule the team studied, microRNA 140 (miR-140), is part
of a recently discovered category of genetic molecules -- "microRNAs" or
"non-coding RNAs" which do not code for proteins, yet often play a vital role in
gene expression.
"This is the first report showing the critical role of a
specific non-coding RNA in bone development," said Hiroshi Asahara, M.D., Ph.D.,
associate professor of molecular and experimental medicine at Scripps Research.
"Moreover, surprisingly, we observed that microRNA 140 acts against arthritis
progression. This is among the first evidence that non-coding RNA plays a key
role in age-dependent diseases."
"This finding may lead to a new
therapeutic strategy for osteoarthritis," said Shigeru Miyaki, senior research
associate in the Asahara lab and first author of the paper with Tempei Sato of
the National Research Institute for Child Health and Development, "as well as
for conditions that share a similar mechanism, such as spinal disc
degeneration."
Even in comparison with other diseases of aging,
osteoarthritis has a remarkably broad impact. Currently affecting about 15 to 20
million Americans, osteoarthritis is the most common joint disorder and is
expected to increase by 50 percent over the next two decades with the aging of
the population. With no effective treatments, current management strategies for
osteoarthritis focus on reducing pain and inflammation.
Osteoarthritis,
also known as degenerative arthritis, is a disease that affects joint cartilage,
the major weight-bearing "cushion" in joints. The disease results from a
combination of wear and tear on cartilage and underlying age-related changes
that causes cartilage to deteriorate. Joint trauma can also play a role.
Osteoarthritis commonly affects the hands, spine, hips, and
knees.
Asahara and other members his laboratory were interested in the
question of why some people's joints age normally, while others' spiral toward
disease.
The scientists suspected that microRNA could play a role. Once
thought of as mere genetic helpers, microRNAs are now known to prevent proteins
from being produced by messenger RNA, thus acting as an important layer of
regulation for biological processes.
"Recent research findings indicate
that non-coding RNA should be involved in our development and in diseases," said
Asahara, "but we know little about the role of the non-coding RNA for
age-related adult disorders."
The team's interest in one type of microRNA
in particular, miR-140, was piqued by other work ongoing in the lab, which was
published last year. In this study, the team made the observation that miR-140
-- which is only expressed in cartilage -- was reduced in cartilage samples from
osteoarthritis patients. This led the team to hypothesize that miR-140 is a
regulator in osteoarthritis pathology.
To test this idea, the team tried
for several years to make targeted "knockout" mouse models that lacked miR-140.
They finally succeeded.
With models lacking miR-140, the scientists were
able to figure out its effects. Since the animals lacking miR-140 were short in
stature, the scientists concluded that miR-140 affected bone formation during
development. The mutant mice were also particularly prone to developing
osteoarthritis, suggesting that miR-140 retarded the disease. In contrast, the
scientists found, transgenic mice that overexpressed miR-140 were resistant to
developing the condition.
The team's findings fit in well with other
recent research showing that an enzyme called Adamts-5 is necessary for
osteoarthritis progression; miR-140 is known to regulate Adamts-5.
The
team continues to investigate to learn more about the factors that control
miR-140, the proteins it affects, and potential drugs that might influence its
action.
In addition to Asahara, Miyaki, and Sato, authors of the paper
"MicroRNA-140 plays dual roles in both cartilage development and homeostasis,"
are Atsushi Inoue, Yoshiaki Ito, Shigetoshi Yokoyama, Fuko Takemoto, Tomoyuki
Nakasa, Satoshi Yamashita, Shuji Takada, and Hiroe Ueno-Kudo of the National
Research Institute for Child Health and Development in Japan, Yoshio Kato of the
National Institute of Advanced Industrial Science and Technology in Japan, and
Shuhei Otsuki and Martin Lotz of Scripps Research.
U.S. sources of
funding for this project included the National Institutes of Health, the
Arthritis National Research Foundation, and the Arthritis Foundation. Japanese
sources of funding included the Japanese Ministry of Health, Labor, and Welfare;
the Genome Network Project; National Institute of Biomedical Innovation,
Research on Child Health and Development; and The Japan Health Sciences
Foundation.
Ends
SA/EN
Home »
» Body’s own molecular protection against arthritis discovered
Body’s own molecular protection against arthritis discovered
Subscribe to:
Post Comments (Atom)
0 comments:
Post a Comment