Evolutionary tree of life for mammals greatly improved

Thursday, 26 September 2013

Islamabad, Sep 27 (Newswire): An international research team led by biologists at the University of California, Riverside and Texas A&M University has released for the first time a large and robust DNA matrix that has representation for all mammalian families.

The matrix -- the culmination of about five years of painstaking research -- has representatives for 99 percent of mammalian families, and covers not only the earliest history of mammalian diversification but also all the deepest divergences among living mammals.

"This is the first time this kind of dataset has been put together for mammals," said Mark Springer, a professor of biology at UC Riverside, who co-led the research project with William Murphy, an associate professor of genetics at Texas A&M. "Until now, no one has been able to assemble this kind of matrix, based on DNA sequences from many different genes, to examine how the different families of mammals are related to each other. This dataset, with all the sequences we generated, provides a large and reliable foundation -- a springboard -- for biologists to take the next leap in this field of work. We can now progress from phylogeny that has representatives for all the different mammalian families to phylogenies that have representatives for genera and species."

Phylogeny is the history of organismal lineages as they change through time. A vast evolutionary tree, called the Tree of Life, represents the phylogeny of organisms, the genealogical relationships of all living things.

As most introductory biology textbooks will show, organisms are biologically classified according to a hierarchical system characterized by seven main taxonomic ranks: kingdom, phylum or division, class, order, family, genus, species. For example, humans are known taxonomically as Homo sapiens. Their genus is Homo, the family is Hominidae, the order is Primates and the class is Mammalia.

To date divergence times on their phylogeny of mammalian families, Springer and colleagues used a "relaxed molecular clock." This kind of molecular clock allows for the use of multiple rates of evolution instead of using one rate of evolution that governs all branches of the Tree of Life. They also used age estimates for numerous fossil mammals to calibrate their time tree.

"We need to have calibrations to input into the analysis so that we know, for example, that elephants and their nearest relatives have been separate from each other since at least the end of the Paleocene -- more than 55 million years ago," Springer said. "We were able to put together a diverse assemblage of fossil calibrations from different parts of the mammalian tree, and we used it in conjunction with molecular information to assemble the most robust time tree based on sequenced data that has been developed to date."

"This study is the beginning of a larger plan to use large molecular data sets and sophisticated techniques for dating and estimating rates of diversification to resolve much larger portions of the mammalian tree, ultimately including all described species, as well as those that have gone recently extinct or for which only museum material may be available," Murphy said. "Only then can we really begin to understand the role of the environment and events in earth history in promoting the generation of living biodiversity. This phylogeny also serves as a framework to understand the history of the unique changes in the genome that underlie the vast morphological diversity observed in the more than 5400 living species of mammals."

Springer explained that the research team looked for spikes in the diversification history of mammals and used an algorithm to determine whether the rate of diversification was constant over time or whether there were distinct pulses of rate increases or decreases. The researchers found an increase in the diversification rate 80-82 million years ago, which corresponds to the time -- specifically, the end of the Cretaceous Terrestrial Revolution -- when a lot of different orders were splitting from each other.

"This is when flowering plants diversified, which provided opportunities for the diversification of small mammals," Springer said.

Springer and colleagues also detected a second spike in the diversification history of mammals at the end of the Cretaceous -- 65.5 million years ago, when dinosaurs, other large terrestrial vertebrates, and many marine organisms went extinct, opening up a vast ecological space.

"Such ecological voids can get filled quickly," Springer explained. "We see that in mammals, even though different orders such as primates and rodents split from each other back in the Cretaceous, the orders did not diversify into their modern representations until after the Cretaceous, 65.5 million years ago. The void seems to have facilitated the radiation -- that is, branching in conjunction with change -- of different orders of several mammals into the adaptive zones they occupy today. After the Cretaceous, we see increased diversification, with some lineages becoming larger and more specialized."

The researchers stress that their time tree is a work in progress. In the next two years, they expect to construct a supermatrix, also based on gene sequences, and include the majority of living mammalian species. The current work incorporates 164 mammalian species.

"Our phylogeny, underpinned by a large number of genes, sets the stage for us to understand how the different mammalian species are related to each other," Springer said. "That will help us understand when these species diverged from each other. It will allow us to look for taxonomic rates of increase or decrease over time in different groups in various parts of the world so that we can understand these diversification rate changes in relationship to important events in Earth's history -- such as the diversification of flowering plants and changes associated with climatic events. Researchers routinely make use of phylogenies in diverse fields such as ecology, physiology, and biogeography, and the new phylogeny for mammalian families provides a more accurate framework for these studies.

"When you understand how taxa are related to each other," Springer added, "you can start to understand which changes at the genome level underpin key morphological changes associated with, say, flight and echolocation in bats or loss of teeth in toothless mammals. In other words, you can pinpoint key molecular changes that are associated with key morphological changes. This would be extremely difficult, if not altogether impossible, without the kind of robust molecular phylogeny we have developed."

The research team also reports that their results contradict the "delayed rise of present-day mammals" hypothesis. According to this hypothesis, introduced by a team of scientists in a 2007 research paper, the ancestors of living mammals underwent a pulse of diversification around 50 million years ago, possibly in response to the extinction of archaic mammals that went extinct at the end of the Paleocene (around 56 million years ago). The earlier extinction event around 65.5 million years ago, which resulted in the demise of the dinosaurs, had no effect on the diversification of the ancestors of extant mammals, according to the 2007 research paper.

"Our analysis shows that the mass extinction event 65.5 million years ago played an important role in the early diversification and adaptive radiation of mammals," Springer said. "The molecular phylogeny we used to develop the matrix is far more reliable and accurate, and sets our work apart from previous studies."
Continue Reading | comments

Bioengineers reprogram muscles to combat degeneration

Islamabad, Sep 27 (Newswire): Researchers at the University of California, Berkeley, have turned back the clock on mature muscle tissue, coaxing it back to an earlier stem cell stage to form new muscle.

Moreover, they showed in mice that the newly reprogrammed muscle stem cells could be used to help repair damaged tissue.

The achievement, described in the Sept. 23 issue of the journal Chemistry & Biology, "opens the door to the development of new treatments to combat the degeneration of muscle associated with muscular dystrophy or aging," said study principal investigator Irina Conboy, UC Berkeley assistant professor of bioengineering.

Skeletal muscle tissue is composed of elongated bundles of myofibers, which are individual muscle cells (myoblasts) that have fused together. This fusion of individual cells is considered the final step of skeletal muscle differentiation.

"Muscle formation has been seen as a one-way trip, going from stem cells to myoblasts to muscle fiber, but we were able to get a multi-nucleated muscle fiber to reverse course and separate into individual myoblasts," said Conboy, who is also a member of the Berkeley Stem Cell Center and an investigator with the California Institute for Quantitative Biosciences (QB3). "For many years now, people have wanted to do this, and we accomplished that by exposing the tissue to small molecule inhibitor chemicals rather than altering the cell's genome."

Current research on treatments based upon pluripotent cells -- the type of stem cell that can turn into any type of adult cell -- have been challenging. Pluripotent cells can either come from embryonic tissue, a source of controversy, or from adult, differentiated cells that have been coaxed to de-differentiate into an embryonic-like state. This latter technique produces induced pluripotent stem cells (iPS) through the delivery of specific genes that reprogram the adult cells to revert back to a pluripotent stem cell state.
Pluripotent stem cells can divide almost indefinitely, and if not driven toward a particular organ type, the cells quickly form teratomas, or tumors containing a combination of immature malformed tissues -- a serious downside of the use of iPS cell tansplantation as a potential treatment.

"The biggest challenge with both embryonic stem cells or iPS cells is that even a single undifferentiated pluripotent cell can multiply in vivo and give rise to tumors," said study lead author Preeti Paliwal, a UC Berkeley post-doctoral researcher in bioengineering. "Importantly, reprogrammed muscle stem-progenitor cells do not form tumors when transplanted into muscle in vivo."

Unlike pluripotent stem cells, which can differentiate into any type of adult cell, adult organ-specific stem cells have a set destiny. Muscle progenitor cells are fated to become muscle tissue, liver progenitor cells can only become liver tissue, and so on.

"In addition, it is difficult to differentiate these embryonic-like cells into functional adult tissue, such as blood, brain or muscles," said Paliwal. "So rather than going back to a pluripotent stage, we focused on the progenitor cell stage, in which cells are already committed to forming skeletal muscle and can both divide and grow in culture. Progenitor cells also differentiate into muscle fibers in vitro and in vivo when injected into injured leg muscle."

Muscle progenitor cells are normally situated alongside mature myofibers, which is why they are also called satellite cells. These cells lay dormant until called into action to repair and build new muscle tissue that has been injured or worn out. This happens regularly as we go about our daily lives, and muscle builders know this cycle when they tear old muscle fibers and build new tissue by lifting weights.

However, that process of repair gets worn out in people with Duchenne muscular dystrophy, a genetic condition in which muscles degenerate because of a defective structural protein and the subsequent exhaustion of muscle stem cells.

To get a multi-nucleated muscle fiber to reverse course and separate into individual myoblasts, the researchers exposed the differentiated muscle tissue to tyrosine phosphatase inhibitors, giving the signal to mature cells to start dividing again.

"Exposing the myofibers to this tyrosine phosphatase inhibitor transmits signals for cell division, but that can be too dramatic a change for them," said Paliwal. "These cells had already fused together into one big structure, sharing one cytoplasm and one cytoskeleton. If you simply tell them to divide, many of them start dying. You confuse them."

To solve this, the researchers also used an inhibitor of apoptosis, or cell death. "We basically brainwashed the cells to go into the cell cycle, to divide and also not die in the process," said Paliwal.
Conboy noted that the use of molecular inhibitors to de-differentiate mature tissue is a sought-after application in the stem cell field.

"These tiny chemicals go inside the cell and change the way the cell behaves without changing its genome," she said. "The inhibitors were only used for 48 hours, enough time for the fused myofibers to split into individual cells, and then they were washed away. The cells can proceed to live and die as normal, so there is no risk of them dividing uncontrollably to become tumors."

To prove unequivocally that the myoblasts they produced were de-differentiated from mature muscle tissue rather than activated from the few satellite cells that accompany myofibers, the researchers genetically labeled the fused myofibers with a protein that emits green fluorescent light. The researchers then knew that the myoblasts that glowed green could have only come from the differentiated myofiber.

To test the viability of the newly regenerated myobasts, the researchers first cultured them in the lab to show that they could grow, multiply and fuse normally into new myofibers. The researchers then injected the de-differentiated myoblasts into live mice with damaged muscles.

"After two to three weeks, we checked the muscle and saw new muscle fibers that glowed green, proving that the progenitor cells we derived from mature muscle tissue contributed to muscle repair in vivo in mice," said Paliwal.

The researchers say the next steps include testing the process on human muscle tissue and screening for other molecular compounds that could help de-differentiate mature tissue.

"This approach won't work for all degenerative diseases," said Conboy. "It might work for some diseases or conditions where we can start with differentiated tissue, such as neurons or liver cells. But patients with type I diabetes, for instance, lack the pancreatic beta-islet cells to produce insulin, so there is no functional differentiated tissue to start with. Our approach is not a replacement for pluripotent cells, but it's an additional tool in the arsenal of stem cell therapies."
Continue Reading | comments

Some brain wiring continues to develop well into our 20s

Islamabad, Sep 27 (Newswire): The human brain doesn't stop developing at adolescence, but continues well into our 20s, demonstrates recent research from the Faculty of Medicine & Dentistry at the University of Alberta.

It has been a long-held belief in medical communities that the human brain stopped developing in adolescence. But now there is evidence that this is in fact not the case, thanks to medical research conducted in the Department of Biomedical Engineering by researcher Christian Beaulieu, an Alberta Innovates -- Health Solutions scientist, and by his PhD student at the time, Catherine Lebel. Lebel recently moved to the United States to work at UCLA, where she is a post-doctoral fellow working with an expert in brain-imaging research.

"This is the first long-range study, using a type of imaging that looks at brain wiring, to show that in the white matter there are still structural changes happening during young adulthood," says Lebel. "The white matter is the wiring of the brain; it connects different regions to facilitate cognitive abilities. So the connections are strengthening as we age in young adulthood."

The duo recently published their findings in the Journal of Neuroscience. For their research they used magnetic resonance imaging or MRIs to scan the brains of 103 healthy people between the ages of five and 32. Each study subject was scanned at least twice, with a total of 221 scans being conducted overall. The study demonstrated that parts of the brain continue to develop post-adolescence within individual subjects.

The research results revealed that young adult brains were continuing to develop wiring to the frontal lobe; tracts responsible for complex cognitive tasks such as inhibition, high-level functioning and attention. The researchers speculated in their article that this may be due to a plethora of life experiences in young adulthood such as pursing post-secondary education, starting a career, independence and developing new social and family relationships.

An important observation the researchers made when reviewing the brain-imaging scan results was that in some people, several tracts showed reductions in white matter integrity over time, which is associated with the brain degrading. The researchers speculated in their article that this observation needs to be further studied because it may provide a better understanding of the relationship between psychiatric disorders and brain structure. These disorders typically develop in adolescence or young adulthood.

"What's interesting is a lot of psychiatric illness and other disorders emerge during adolescence, so some of the thought might be if certain tracts start to degenerate too soon, it may not be responsible for these disorders, but it may be one of the factors that makes someone more susceptible to developing these disorders," says Beaulieu.
"It's nice to provide insight into what the brain is doing in a healthy control population and then use that as a springboard so others can ask questions about how different clinical disorders like psychiatric disease and neurological disease may be linked to brain structure as the brain progresses with age."
Continue Reading | comments
 
Copyright © 2011. Newswire . All Rights Reserved
Company Info | Contact Us | Privacy policy | Term of use | Widget | Advertise with Us | Site map
Template Modify by Creating Website. Inpire by Darkmatter Rockettheme Proudly powered by Blogger